1

К оглавлению

 

93. Классификационные группы ЭВМ: основные характеристики и особенности

Электронная вычислительная машина, компьютер - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Классификация ЭВМ по принципу действия

По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).

Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают.

При аналоговом представлении информации значения измеряемых величин могут принимать любые допустимые значения из заданного диапазона, плавно без разрывов переходя от одного значения к другому. Теоретически, представляется весь бесконечный спектр значений измеряемой величины на заданном отрезке. Таким образом, аналоговые ВМ - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).

При дискретном представлении информации значения измеряемых величин носят дискретный (конечный) характер в измеряемом диапазоне.

Положительные черты обоих типов совмещают гибридные ВМ

Гибридные вычислительные машины (ГВМ) - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Классификация ЭВМ по этапам создания

По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

1-е поколение, 50-е гг.: ЭВМ на электронных вакуумных лампах;

ЭВМ первого поколения - использовали ламповую элементную базу, обладали малым быстродействием и объемом памяти, имели неразвитые операционные системы, программирование выполнялось на языках программирования низкого уровня (конец 40-х и 50-е гг.).

2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

ЭВМ второго поколения - использовали полупроводниковую элементную базу, изменяемый состав внешних устройств, языки программирования высокого уровня и принцип библиотечных программ (конец 50-х, 60-е и начало 70-х гг.).

3-е поколение, 70-е гг.: ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни - тысячи транзисторов в одном корпусе);

ЭВМ третьего поколения - использовали в качестве элементной базы интегральные схемы (ИС), имели развитую конфигурацию внешних устройств и стандартизированные средства сопряжения, обладали большим быстродействием и объемами основной и внешней памяти. Развитая операционная система обеспечивала работу в т.н. “мультипрограммном” (т.е. с использованием многих программ) режиме (70-е, начало 80-х гг.).

4-е поколение, 80-е гг.: ЭВМ на больших и сверхбольших интегральных схемах - микропроцессорах (десятки тысяч - миллионы транзисторов в одном кристалле);

ЭВМ четвертого поколения - используют большие и сверхбольшие интегральные схемы (БИС и СБИС), виртуальную память, многопроцессорный с параллельным выполнением операций принцип построения, развитые средства диалога (середина 80-х гг. по настоящее время).

5-е поколение, 90-е гг.: ЭВМ со многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

ЭВМ пятого поколения – характеризуются наряду с использованием более мощных СБИС применением принципа “управления потоками данных” (в отличие от принципа Джона фон Неймана “управления потоками команд”), новыми решениями в архитектуре вычислительной системы и использованием принципов искусственного интеллекта. С ЭВМ пятого поколения связывают наряду с другими особенностями возможность ввода данных и команд голосом. Начало разработки ЭВМ этого поколения можно отнести ко второй половине 80-х гг., внедрения первых образцов - к первой половине 90-х гг.

6-е и последующие поколения: оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Каждое следующее поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.

Классификация ЭВМ по назначению

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами; устройства согласования и сопряжения работы узлов вычислительных систем.

Классификация ЭВМ по размерам и функциональным возможностям

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ).

1. Сверхбольшие (суперЭВМ) – это компьютеры, предназначенные для решения задач, тре­бующих громадных объемов вычислений. Основные потребители су­перЭВМ – военные, метеорологи, геологи и многие прочие ученые. Например, качественный прогноз погоды или моделирование ядерного взрыва требуют колоссальных расчетов, так что применение суперЭВМ здесь полностью оправдано. СуперЭВМ стоят десятки миллио­нов долларов (если не дороже), их производят всего несколько фирм – Cray Research (ныне это подразделение фирмы Silicon Graphics), Hitachi и др.

К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки  миллионов операций в секунду.

Создать такую высокопроизводительную ЭВМ по современной технологии на одном микропроцессоре не представляется возможным ввиду ограничения, обусловленного конечным значением скорости распространения электромагнитных волн (300000 км/с), ибо время распространения сигнала на расстояние нескольких миллиметров при быстродействии 100 млрд. оп/с становится соизмеримым со временем выполнения одной операции. Поэтому суперЭВМ создаются в виде высоко параллельных многопроцессорных вычислительных систем (МПВС).

2. Большие ЭВМ  за рубежом часто называют мэйнфреймами (Mainframe) – вычислительная система с наибольшими вычислительными возможностями. Обычно занимали одну или несколько комнат, использовали специальный магнитный барабан или статистически запоминающее устройство вместе со сменяемыми жесткими дисками. Могли осуществлять операции с очень большими объемами данных и с очень большой скоростью.  Программы вводились на бумажной ленте или перфоленте.

Основные направления эффективного применения мэйнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление — использование мэйнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.

3. Малые ЭВМ (мини-ЭВМ) — надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями. Такие ПК используются крупными предприятиями, научными учреждениями и некоторыми высшими   учебными заведениями, сочетающими учебную деятельность с научной. Мини-ЭВМ  часто применяют для управления  производственными  процессами.  Для организации работы с МиниЭВМ требуется специальный ВЦ, небольшой по сравнению с большими ЭВМ

4. Микро ЭВМ – доступны многим предприятиям, не требуют создания ВЦ. Несмотря на относительно невысокую производительность, по сравнению с большими ЭВМ, находит применение в крупных ВЦ, где выполняют вспомогательные операции, для которых нет смысла использовать дорогие Суперкомпьютеров (предварительная подготовка данных).

Информационно логические основы построения ЭВМ

Представление информации в ЭВМ

Системы счисления и формы представления чисел

Информация в ЭВМ кодируется, как правило, в двоичной или в двоично-десятичной системе счисления.

Логические основы построения ПК

Основы алгебры логики

Для анализа и синтеза схем в ЭВМ при алгоритмизации и программировании решения задач широко используется математический аппарат алгебры логики.

Алгебра логики - это раздел математической логики, значения всех элементов (функций и аргументов) которой определены в двухэлементном множестве: 0 и 1. Алгебра логики оперирует с логическими высказываниями.

Высказывание - это любое предложение, в отношении которого имеет смысл утверждение о его истинности или ложности. При этом считается, что высказывание удовлетворяет закону исключенного третьего, т.е. каждое высказывание или истинно, или ложно и не может быть одновременно и истинным, и ложным.

Простейшими операциями в алгебре логики являются операции логического сложения (иначе, операция ИЛИ, операция дизъюнкции) и логического умножения (иначе, операция И, операция конъюнкции). Для обозначения операции логического сложения используют символы + или V, а логического умножения - символы * или L .

Правила выполнения операций в алгебре логики определяются рядом аксиом, теорем и следствий.

Наименьшим элементом алгебры логики является 0, наибольшим элементом-1.

 

К оглавлению

Hosted by uCoz